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Recently it has been suggestedI that the first order

orbitals describing the perturbation of Hartree-Fock or X-a

closed-shell atoms (more generally atoms with all occupiee

spatialshells closed) by a multipole electric field do not

have the expected symmetry properties. In this note we will

show that these fears are groundless. More precisely we will

show that the assumption of the expected symmetry is a self-

consistent one. This of course does not immediately show that

it is the only solution of the perturbation equations, but since

the latter are inhomogeneous linear equations, we expect that

this is probably the case.[Ahlberg and Goscinski (private com-
munication) have now also reached the same conclusi as regards X-a]

We consider the perturbation of an orbital U of
n.R.m.

the form

(0) +U (1) = Y (1) R (r) (1)n.k.m. Z.m. n.k. 1

by a perturbation proportional to PL(1) whare I represents

all the cirtesian coordinates of particle 1 and where 1

is a unit vector in the I direction and hence represents the

angular coordinates. Then writing

PL(1)Yimi (1) Yjm.(1)(Yjm PL m )  (2)
j m.=j i i



2

one expects 2 that the first order perturbed orbital will have

the form

U 1) R ( )  (rI )  Y. (i)(Y P Yn.ik.m. jn.iZiL 1 mm jm. L X.m.) (3)11 j m.=-j j j ii

To see whether or not this assumption is self-consistent we

first examine the first-order correction to the charge density.

The contribution from a closed-shell of orbital angular

momentum k is then

k

SU( 1  (1) U (1) + cc. (4)
mk=-k nkkmk nkkmk

and in turn the contribution to this from a given j in (3) is

then, in its angular dependence, proportional to

LO LO*Q +Q
jk jk

where

k j

LMWe will now prove that Qjk(1) is an M independent multiple of

YLM(1) and this, as one can then readily verify, is sufficient

to completely guarantee the consistency of our assumption as

far as X-a is concerned, and, is sufficient for Hartree-Fock

exclusive of the exchange terms. (Note for example that the

LOpotential produced by Qjk will also be proportional to PL(1))
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We first use the spherical harmonic addition theorem to re-

write (5), to within a constant factor as

LM 6) ^

Qjk ( 1 ) = d2 Pj (* 2 )YLM( 2 )Pk(1*2) (6)

3 LM ^It is then easy to show that Q j(1 transforms under rota-

tion precisely like YLM(1) and hence as claimed must be aN M-!oP~sub1jr

numerical multiple of YLM(1) o The numerical coefficient is

evaluated in the appendix of this article.

Turning now to the exchange terms of Hartree-Fock, the con-

tribution from a given j and k in the equation for

U (I)  is readily found to be the sum of two pieces one of
iki

which, insofar as is its angular dependence is concerned, being

proportional to

TjLO() (7)

and the other to

TLO T
kj

where

k j
TLM d2 

ATL d2~ . 1() Y)Y (2)Y (2)mk= k  _ r2 jm jm Lkmk .m. kmkmk -k mj 1 i

(8)
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We will now show that 71k( ) is of the form
jk

TL = p L(r ) Y (1)(Y ,YLMY..m.) (9)

where, as indicated, p is independent of p,M and m. . It
1

is then easy to show that this is sufficient to ensure the

consistency of the exchange term since with this result the

mi, dependent coefficients (Y X,PLY .m) will correctly
1 1

cancel out of the equations one gets by equating the coefficient

of each spherical harmonic separately equal to zero, the result

in each case then being the same set of coupled equations for

the radial functions R(

jn.k.L
11

To derive (9) we note that from the spherical harmonic addition

theorem we have, to within an mo,M independent factor that

LM d2A A
Tjk )= l2 d 3 P (l1 3 )Pk( 2*3)YLM(3)Y (2)

in which form it is clear4 that under a rotation TLM(1) trans-
jk

forms like YLM 1)YX m (1) . Hence writing T M(t) as

LM LMT Mk(T) = Y (1) (Y ,T k)

this means that (the argument is essentially the same as that in

footnote 3)



Y (l)(Y X , TM) = d2 PX (1-2)T (2)

transforms like Y I(1)(Y XYLMY .m ) which in turn means,

since the Y for a given X yield an irreducible repre-

sentation of the rotation group, that to within a p , M

and m. independent factor
1

(YI' T ) = (YI'YLMY m )A jk 1 LM .m. (10)1]1

jkL
which proves the point. The coefficients pXkL are given

explicitly in the appendix.

Our interest in these questions was aroused by conversations

with R. Ahlberg. Also it is a pleasure to acknowledge further

correspondence with him and Dr. Goscinski.
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1^ Awhich upon changing variables according tc 2-2

becomes

Qjk(Rl) = d2 P (1*2)y LM(2 Pk(1-2)

which proves the point since the transfor ~a.rn zo

efficients are independent of coordinates,

4. Proceeding similarly as in 3 one finds thai.

LM !2^T (R) =d3 P.(13) Pk(2*3) YL(R 3) Y, (R2)1k r 2 LM i

which proves the point since the transforr,:t on coefficients

are independent of coordinates.

5. A. Messiah, Quantum Mechanics, Vol. II (John Uiley & Sons,

Inc., New York, 1966), Appendix C.
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APPENDIX

We use the conventions of Messiah
5 in evaluating

LM jkL
Qjk(1) and p .(rI) and refer to his equations. We

^ i

evaluate QLM(1) of (6) by the spherical harmonic composition
Qjk

relation. From Messiah C.16 and C.17b one obtains

Q (1) = 41(00) [(2L+1l)(2'+l)1/2 jk )YM ( -M jkM mk L
mjm k jmk

The identity C.15a gives the desired result

LM ^  jkL 2 (A-l)
Qjk(1) = 4( (000 l)
jk 000 LM

To evaluate kL (rl) we note by comparing (9) and (10)
1

it follows that

kL (rLM (A-2)
PU. (rI ) (Y ,L MY pmo

1 1 1

We now evaluate the right hand side of this equation. From

the definition (8) and Messiah C.16 it follows that

(Y ,T)LM (4 -1/2 (2j+1) (2k+l) [ (2+1) (2ki+1)(2L+1) 1/2 (jkL

R Wrt) 00 0 ) (m j+mk+m' x ' j k' j L k

x R,(r ) (0 0  -i -m' m. -mkm'mi -mM
Smijmkm' J jM mk



wrere

Rx 2 dr,

Use of Messiah C.33 then yields

(YXA j (7= - 22j+1" (2k+1) [ (2.+I) (2k.i+1) (2L+1) ]i2

( 000 ' 00 00 00 0 ( k) (A-3)

However

S-1/(21+1)( 2L+ .i L Z L A
M i 00 0 miM-y

(A-4)

and therefore, from (A-2), we have as our final result

jk L AZ.L -Ip ' (r)=(-)L(2j+) (2k+1l)(00 0 "0 (-)" (,)00 ( )

x(00 0 {j0 0 k} 0..ieR3~, R,'i X
x( ) { -L a' .-r,TO 0 Vk IA I


